20=n^2/2+6

Simple and best practice solution for 20=n^2/2+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=n^2/2+6 equation:



20=n^2/2+6
We move all terms to the left:
20-(n^2/2+6)=0
We get rid of parentheses
-n^2/2-6+20=0
We multiply all the terms by the denominator
-n^2-6*2+20*2=0
We add all the numbers together, and all the variables
-1n^2+28=0
a = -1; b = 0; c = +28;
Δ = b2-4ac
Δ = 02-4·(-1)·28
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*-1}=\frac{0-4\sqrt{7}}{-2} =-\frac{4\sqrt{7}}{-2} =-\frac{2\sqrt{7}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*-1}=\frac{0+4\sqrt{7}}{-2} =\frac{4\sqrt{7}}{-2} =\frac{2\sqrt{7}}{-1} $

See similar equations:

| u+6.1=9.93 | | 2(x–12)+2=3(x–3)+12 | | 3^x-2=15 | | r+r+9r=19 | | 20x-5=20x+10 | | w-6.7=3.9 | | x+5/10=9/5+x-8/4 | | 3x+47=6x-8 | | 16–8y=72 | | 2x+2*x=40 | | y+3.67=9.29 | | 40=2x^2+2x | | 40=2x+2+x | | 3.4x-2.1=5.4x-6.1 | | -7(d-3)=-16 | | 9x+21=12x | | ⅓(6x+12)+3=2(x+7) | | 8a^2-11=0 | | 5v=12-v | | 24=2(x+4 | | 4x-2.1=5.4x-6.1 | | 4(2x–3)=20 | | 3(2x+1)-2=3x+8 | | 1/2(10y+2)+3=14 | | -2b+4.1=-2.9 | | 12=4(z-8) | | (5x+4)=(14x-2) | | 8y-5=5y+16+6y | | 63x+63x+1+53=180 | | 105=1/2(10)(7)x | | 60=-10s | | 35=q/4+2 |

Equations solver categories